620 research outputs found

    Metabolic and cardiovascular traits: an abundance of recently identified common genetic variants

    Get PDF
    Genome-wide association studies are providing new insights into the genetic basis of metabolic and cardiovascular traits. In the past 3 years, common variants in ∼50 loci have been strongly associated with metabolic and cardiovascular traits. Several of these loci have implicated genes without a previously known connection with metabolism. Further studies will be required to characterize the full impact of these loci on metabolism. Many of the identified loci include multiple independent variants that influence the same metabolic or cardiovascular trait and a few loci harbor independent variants that each influence distinct traits. The total proportion of trait heritability explained by variants identified so far is still modest (typically <10%). Future studies will build on these successes by identifying additional common and rare variants and by determining the functional impact of the underlying alleles and genes

    Association of FTO With Obesity-Related Traits in the Cebu Longitudinal Health and Nutrition Survey (CLHNS) Cohort

    Get PDF
    OBJECTIVE—The underlying genetic component of obesity-related traits is not well understood, and there is limited evidence to support genetic association shared across multiple studies, populations, and environmental contexts. The present study investigated the association between candidate variants and obesity-related traits in a sample of 1,886 adult Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS) cohort

    Allele-Specific Transcriptional Activity at Type 2 Diabetes-Associated Single Nucleotide Polymorphisms in Regions of Pancreatic Islet Open Chromatin at the JAZF1 Locus

    Get PDF
    Translation of noncoding common variant association signals into meaningful molecular and biological mechanisms explaining disease susceptibility remains challenging. For the type 2 diabetes association signal in JAZF1 intron 1, we hypothesized that the underlying risk variants have cis-regulatory effects in islets or other type 2 diabetes–relevant cell types. We used maps of experimentally predicted open chromatin regions to prioritize variants for functional follow-up studies of transcriptional activity. Twelve regions containing type 2 diabetes–associated variants were tested for enhancer activity in 832/13 and MIN6 insulinoma cells. Three regions exhibited enhancer activity and only rs1635852 displayed allelic differences in enhancer activity; the type 2 diabetes risk allele T showed lower transcriptional activity than the nonrisk allele C. This risk allele showed increased binding to protein complexes, suggesting that it functions as part of a transcriptional repressor complex. We applied DNA affinity capture to identify factors in the complex and determined that the risk allele preferentially binds the pancreatic master regulator PDX1. These data suggest that the rs1635852 region in JAZF1 intron 1 is part of a cis-regulatory complex and that maps of open chromatin are useful to guide identification of variants with allelic differences in regulatory activity at type 2 diabetes loci

    Replication of LIN28B SNP association with age of menarche in young Filipino women: LIN28Bassociation with age of menarche

    Get PDF
    Age of menarche, or the timing of first menses in girls, is a physiological trait that shows substantial genetic heritability. Earlier age of menarche is associated with increased childhood adiposity and with adult risk of obesity and cardiovascular disease. In 827 young Filipino women from the Cebu Longitudinal Health and Nutrition Survey (CLHNS), we observed nominal association with age of menarche (β = −0.118 years, 95% confidence interval = (−0.216, −0.020), P = 0.019) for the single nucleotide polymorphism (SNP) rs7759938 from the menarche locus LIN28B with an effect direction consistent with the previous report. We also tested whether childhood adiposity, as measured by body mass index (BMI) at age 8, mediated the relationship between rs7759938 and age of menarche. We observed suggestive evidence that the effect of the SNP on age of menarche was independent of childhood adiposity. These data confirm the strongest gene reported in Europeans (LIN28B) as a contributor to age of menarche in an Asian population

    Genetic risk score and adiposity interact to influence triglyceride levels in a cohort of Filipino women

    Get PDF
    Background/Objectives:Individually, genetic variants only moderately influence cardiometabolic (CM) traits, such as lipid and inflammatory markers. In this study we generated genetic risk scores from a combination of previously reported variants influencing CM traits, and used these scores to explore how adiposity levels could mediate genetic contributions to CM traits.Subjects/Methods:Participants included 1649 women from the 2005 Cebu Longitudinal Health and Nutrition Survey. Three genetic risk scores were constructed for C-reactive protein (CRP), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs). We used linear regression models to assess the association between each genetic risk score and its related trait. We also tested for interactions between each score and measures of adiposity.Results:Each genetic risk score explained a greater proportion of variance in trait levels than any individual genetic variant. We found an interaction between the TG genetic risk score (2.29–14.34 risk alleles) and waist circumference (WC) (Pinteraction=1.66 × 10−2). Based on model predictions, for individuals with a higher TG genetic risk score (75th percentile=12), having an elevated WC (⩾80 cm) increased TG levels from 1.32 to 1.71 mmol l−1. However, for individuals with a lower score (25th percentile=7), having an elevated WC did not significantly change TG levels.Conclusions:The TG genetic risk score interacted with adiposity to synergistically influence TG levels. For individuals with a genetic predisposition to elevated TG levels, our results suggest that reducing adiposity could possibly prevent further increases in TG levels and thereby lessen the likelihood of adverse health outcomes such as cardiovascular disease

    INK4/ARF Transcript Expression Is Associated with Chromosome 9p21 Variants Linked to Atherosclerosis

    Get PDF
    Genome-wide association studies (GWAS) have linked common single nucleotide polymorphisms (SNPs) on chromosome 9p21 near the INK4/ARF (CDKN2A/B) tumor suppressor locus with risk of atherosclerotic diseases and type 2 diabetes mellitus. To explore the mechanism of this association, we investigated whether expression of proximate transcripts (p16(INK4a), p15(INK4b), ARF, ANRIL and MTAP) correlate with genotype of representative 9p21 SNPs.We analyzed expression of 9p21 transcripts in purified peripheral blood T-cells (PBTL) from 170 healthy donors. Samples were genotyped for six selected disease-related SNPs spanning the INK4/ARF locus. Correlations among these variables were determined by univariate and multivariate analysis. Significantly reduced expression of all INK4/ARF transcripts (p15(INK4b), p16(INK4a), ARF and ANRIL) was found in PBTL of individuals harboring a common SNP (rs10757278) associated with increased risk of coronary artery disease, stroke and aortic aneurysm. Expression of MTAP was not influenced by rs10757278 genotype. No association of any these transcripts was noted with five other tested 9p21 SNPs.Genotypes of rs10757278 linked to increased risk of atherosclerotic diseases are also associated with decreased expression in PBTL of the INK4/ARF locus, which encodes three related anti-proliferative transcripts of known importance in tumor suppression and aging

    Estimation of genetic effects on BMI during adolescence in an ethnically diverse cohort: The National Longitudinal Study of Adolescent Health

    Get PDF
    Objective:The contribution of genetic variants to body mass index (BMI) during adolescence across multiethnic samples is largely unknown. We selected genetic loci associated with BMI or obesity in European-descent samples and examined them in a multiethnic adolescent sample.Design and Sample:In 5103 European American (EA), 1748 African American (AfA), 1304 Hispanic American (HA) and 439 Asian American (AsA) participants of the National Longitudinal Study of Adolescent Health (Add Health; ages 12–21 years, 47.5% male), we assessed the association between 41 established obesity-related single-nucleotide polymorphisms (SNPs) with BMI using additive genetic models, stratified by race/ethnicity, and in a pooled meta-analysis sample. We also compared the magnitude of effect for BMI–SNP associations in EA and AfA adolescents to comparable effect estimates from 11 861 EA and AfA adults in the Atherosclerosis Risk in Communities study (ages 45–64 years, 43.2% male).Results:Thirty-five of 41 BMI–SNP associations were directionally consistent with published studies in European populations, 18 achieved nominal significance (P<0.05; effect sizes from 0.19 to 0.71 kg m−2 increase in BMI per effect allele), while 4 (FTO, TMEM18, TFAP2B, MC4R) remained significant after Bonferroni correction (P<0.0015). Of 41 BMI–SNP associations in AfA, HA and AsA adolescents, nine, three and five, respectively, were directionally consistent and nominally significant. In the pooled meta-analysis, 36 of 41 effect estimates were directionally consistent and 21 of 36 were nominally significant. In EA adolescents, BMI effect estimates were larger (P<0.05) for variants near TMEM18, PTER and MC4R and smaller for variants near MTIF3 and NRXN3 compared with EA adults.Conclusion:Our findings suggest that obesity susceptibility loci may have a comparatively stronger role during adolescence than during adulthood, with variation across race/ethnic subpopulation

    Spontaneous Irs1 passenger mutation linked to a gene-targeted SerpinB2 allele

    Get PDF
    In characterizing mice with targeted disruption of the SerpinB2 gene, we observed animals that were small at birth with delayed growth and decreased life expectancy. Although this phenotype cosegregated with homozygosity for the inactive SerpinB2 allele, analysis of homozygous SerpinB2-deficient mice derived from two additional independent embryonic stem (ES) cell clones exhibited no growth abnormalities. Examination of additional progeny from the original SerpinB2-deficient line revealed recombination between the small phenotype (smla) and the SerpinB2 locus. The locus responsible for smla was mapped to a 2.78-Mb interval approximately 30 Mb proximal to SerpinB2, bounded by markers D1Mit382 and D1Mit216. Sequencing of Irs1 identified a nonsense mutation at serine 57 (S57X), resulting in complete loss of IRS1 protein expression. Analysis of ES cell DNA suggests that the S57X Irs1 mutation arose spontaneously in an ES cell subclone during cell culture. Although the smla phenotype is similar to previously reported Irs1 alleles, mice exhibited decreased survival, in contrast to the enhanced longevity reported for IRS1 deficiency generated by gene targeting. This discrepancy could result from differences in strain background, unintended indirect effects of the gene targeting, or the minimal genetic interference of the S57X mutation compared with the conventionally targeted Irs1-KO allele. Spontaneous mutations arising during ES cell culture may be a frequent but underappreciated occurrence. When linked to a targeted allele, such mutations could lead to incorrect assignment of phenotype and may account for a subset of markedly discordant results from experiments independently targeting the same gene

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity
    corecore